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Abstract

Current methodologies used for the inference of thin film stress through curvature

measurements are strictly restricted to stress and curvature states which are assumed to remain

uniform over the entire film/substrate system. By considering a circular thin film/substrate

system subject to non-uniform, but axisymmetric temperature distributions, we derive

relations between the film stresses and temperature, and between the plate system’s curvatures

and the temperature. These relations featured a ‘‘local’’ part which involves a direct

dependence of the stress or curvature components on the temperature at the same point, and a

‘‘non-local’’ part which reflects the effect of temperature of other points on the location of

scrutiny. Most notably, we also derive relations between the polar components of the film

stress and those of system curvatures which allow for the experimental inference of such

stresses from full-field curvature measurements in the presence of arbitrary radial non-

uniformities. These relations also feature a ‘‘non-local’’ dependence on curvatures making full-

field measurements of curvature a necessity for the correct inference of stress. Finally, it is

shown that the interfacial shear tractions between the film and the substrate are proportional
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to the radial gradients of the first curvature invariant and can also be inferred experimentally.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Substrates formed of suitable solid-state materials may be used as platforms
to support various thin film structures. Integrated electronic circuits, integrated
optical devices and optoelectronic circuits, micro-electro-mechanical systems
(MEMS) deposited on wafers, three-dimensional electronic circuits, systems-
on-a-chip structures, lithographic reticles, and flat panel display systems
are examples of such thin film structures integrated on various types of plate
substrates.
The above-described thin film structures on substrates are often made from a

multiplicity of fabrication and processing steps (e.g., sequential film deposition,
thermal anneal and etch steps) and often experience stresses caused by each of
these steps. Examples of known phenomena and processes that build up stresses
in thin films include, but are not limited to, lattice mismatch, chemical reaction,
doping by, e.g., diffusion or implantation, rapid deposition by evaporation or
sputtering and of course thermal treatment (e.g., various thermal anneal steps). The
film stress build-up associated with each of these steps often produces undesirable
damage that may be detrimental to the manufacturing process because of its
cumulative effect on process ‘‘yield’’ (The National Technology Roadmap for
Semiconductor Technology, 2003). The known problems associated to thermal
excursions, in particular, include stress-induced film cracking and film/substrate
delamination resulting during uncontrolled wafer cooling which follows the many
anneal steps.
The intimate relation between stress-induced failures and process yield loss makes

the identification of the origins of stress build-up, the accurate measurement and
analysis of stresses, and the acquisition of information on the spatial distribution of
stresses a crucial step in designing and controlling processing steps and in ultimately
improving reliability and manufacturing yield.
Stress changes in thin films following discrete process steps or occurring during

thermal excursions may be calculated in principle from changes in the film/substrate
systems curvatures or ‘‘bow’’ based on analytical correlations between such
quantities. Early attempts to provide such correlations are well documented (Freund
and Suresh, 2004). Various formulations have been developed for this purpose and
most of these are essentially extensions of Stoney’s approximate plate analysis
(Stoney, 1909).
Stoney used a plate system composed of a stress bearing thin film, of thickness hf ,

deposited on a relatively thick substrate, of thickness hs, and derived a simple
relation between the curvature, k, of the system and the stress, sðfÞ, of the film as
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follows:

sðfÞ ¼
Esh

2
sk

6hf ð1� nsÞ
. (1.1)

In the above the subscripts ‘‘f’’ and ‘‘s’’ denote the thin film and substrate,
respectively, and E and n are the Young’s modulus and Poisson’s ratio. Eq. (1.1) is
called the Stoney formula, and it has been extensively used in the literature to infer
film stress changes from experimental measurement of system curvature changes
(Freund and Suresh, 2004).
Stoney’s formula was derived for an isotropic ‘‘thin’’ solid film of uniform

thickness deposited on a much ‘‘thicker’’ plate substrate based on a number of
assumptions. Stoney’s assumptions include the following: (1) Both the film thickness
hf and the substrate thickness hs are uniform and hf5hs5R, where R represents the
characteristic length in the lateral direction (e.g., system radius R shown in Fig. 1);
(2) the strains and rotations of the plate system are infinitesimal; (3) both the film
and substrate are homogeneous, isotropic, and linearly elastic; (4) the film stress
states are in-plane isotropic or equi-biaxial (two equal stress components in any two,
mutually orthogonal in-plane directions) while the out-of-plane direct stress and all
shear stresses vanish; (5) the system’s curvature components are equi-biaxial (two
equal direct curvatures) while the twist curvature vanishes in all directions; and (6)
all surviving stress and curvature components are spatially constant over the plate
system’s surface, a situation which is often violated in practice.
hs

hf

2R

r

z

R
 

r

�

Fig. 1. A schematic diagram of the thin film/substrate system, showing the cylindrical coordinates ðr; y; zÞ.
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The assumption of equi-biaxial ðkxx ¼ kyy ¼ k;kxy ¼ kyx ¼ 0Þ and spatially
constant curvature (k independent of position) is equivalent to assuming that the
plate system would deform spherically under the action of the film stress. If this
assumption were to be true, a rigorous application of Stoney’s formula would indeed
furnish a single film stress value. This value represents the common magnitude of
each of the two direct stresses in any two, mutually orthogonal directions (i.e.,
sxx ¼ syy ¼ sðfÞ;sxy ¼ syx ¼ 0;sðfÞ independent of position). This is the uniform
stress for the entire film and it is derived from measurement of a single uniform
curvature value which fully characterizes the system provided the deformation is
indeed spherical.
Despite the explicitly stated assumptions of spatial stress and curvature

uniformity, the Stoney formula is often, arbitrarily, applied to cases of practical
interest where these assumptions are violated. This is typically done by applying
Stoney’s formula pointwise and thus extracting a local value of stress from a local
measurement of the curvature of the system. This approach of inferring film stress
clearly violates the uniformity assumptions of the analysis and, as such, its accuracy
as an approximation is expected to deteriorate as the levels of curvature non-
uniformity become more severe. To the best knowledge of the authors, no analytical
formulation capable of dealing with non-uniform stress and deformation states has
been existence.
Following the initial formulation by Stoney, a number of extensions have been

derived by various researchers who have relaxed some of the other assumptions
(other than the assumption of uniformity) made by his analysis. Such extensions of
the initial formulation include relaxation of the assumption of equi-biaxiality as well
as the assumption of small deformations/deflections. A biaxial form of Stoney,
appropriate for anisotropic film stresses, including different stress values at two
different directions and non-zero, in-plane shear stresses, was derived by relaxing the
assumption of curvature equi-biaxiality (Freund and Suresh, 2004). Related analyses
treating discontinuous films in the form of bare periodic lines (Wikstrom et al.,
1999a) or composite films with periodic line structures (e.g., bare or encapsulated
periodic lines) have also been derived (Shen et al., 1996; Wikstrom et al., 1999b; Park
and Suresh, 2000). These latter analyses have also removed the assumption of equi-
biaxiality and have allowed the existence of three independent curvature and stress
components in the form of two, non-equal, direct components and one shear or twist
component. However, the uniformity assumption of all of these quantities over the
entire plate system was retained. In addition to the above, single, multiple and
graded films and substrates have been treated in various ‘‘large’’ deformation
analyses (Masters and Salamon, 1993; Salamon and Masters, 1995; Finot et al.,
1997; Freund, 2000). These analyses have removed both the restrictions of an equi-
biaxial curvature state as well as the assumption of infinitesimal deformations. They
have allowed for the prediction of kinematically nonlinear behavior and bifurcations
in curvature states. These bifurcations are transformations from an initially equi-
biaxial to a subsequently biaxial curvature state that may be induced by an increase
in film stress beyond a critical level. This critical level is intimately related to the
systems aspect ratio, i.e., the ratio of in-plane to thickness dimension and the elastic



ARTICLE IN PRESS

Y. Huang, A.J. Rosakis / J. Mech. Phys. Solids 53 (2005) 2483–2500 2487
stiffness. These analyses also retain the assumption of spatial curvature and stress
uniformity across the system. However, they allow for deformations to evolve from
an initially spherical shape to an energetically favored shape (e.g., ellipsoidal,
cylindrical or saddle shapes) which features three different, still spatially constant,
curvature components (Lee et al., 2001).
None of the above-discussed extensions of Stoney’s methodology have relaxed the

most restrictive of Stoney’s original assumption of spatial uniformity which does not
allow either film stress or curvature components to vary across the plate surface. This
crucial assumption is often violated in practice since film stresses and the associated
system curvatures are non-uniformly distributed over the plate area. Radially
symmetric or axisymmetric variations in particular are often present in film/substrate
systems. This is part due to the circular wafer geometry and part due to the
axisymmetric geometries of most processing equipment used to manufacture such
wafers. A probably cause of axisymmetric variations in curvature and stress may be
the presence of radial temperature variations associated with the thermal treatment
of circular wafers especially during ‘‘forced’’ cooling in the presence of radial gas
flow or ‘‘natural’’, radiation dominated cooling.
An example of axisymmetric radial curvature distribution is given in Fig. 2.

Figs. 2(a) and (b) show the maximum and the minimum curvature distributions
(principal curvature maps) of a large, industrial scale, 300mm wafer composed of a
1mm thick low-k dielectric film deposited on a 730mm Si substrate. This wafer was
subjected to thermal anneal and the curvatures shown correspond to curvature
changes (after-before) following cooling from 400 1C. The principal curvatures have
been obtained by means of CGS interferometry (Rosakis et al., 1998), a technique
capable of performing full-field, real-time measurements of all three independent
Cartesian components (kxx, kyy and kxy ¼ kxy) of the curvature tensor over the entire
wafer. Following optical measurement of the Cartesian components, the principal
curvatures k1 and k2 were obtained (Park et al., 2003) by using

k1;2 ¼
kxx þ kyy

2
�

kxx � kyy

2

� �2
þ k2xy

� �1=2
. (1.2)

The wafer shape was not a priori assumed to be radially symmetric. However, the
resulting principal curvature maps clearly show that this would be an accurate
approximation in this case. The axisymmetry of these maps as well as the clear
presence of large-scale curvature non-uniformities, along the radial direction,
provides strong motivation for this study. This non-uniformity is in clear violation of
Stoney’s 6th assumption. Furthermore, the two maps in Fig. 2 are clearly different.
This is also in clear violation of Stoney’s 5th assumption which requires equi-
biaxiality of curvature. To clarify the last statement one should recall that once
radial symmetry is established the only two surviving components of curvature are
krrðrÞ ¼ d

2wðrÞ=dr2 and kyyðrÞ ¼ ð1=rÞ ðdw=drÞ, where z ¼ wðrÞ is the equation of the
radial wafer shape. With respect to the polar system of Fig. 1, krr and kyy are the
radial and circumferential curvature components, respectively, and are also equal to
the maximum and minimum principal curvatures. The remaining independent



ARTICLE IN PRESS

Fig. 2. Maximum and minimum principal curvatures of a thin film/substrate system.

Y. Huang, A.J. Rosakis / J. Mech. Phys. Solids 53 (2005) 2483–25002488



ARTICLE IN PRESS

Y. Huang, A.J. Rosakis / J. Mech. Phys. Solids 53 (2005) 2483–2500 2489
curvature component (twist) vanishes along radial lines (Park et al., 2003). Indeed in
this case krrðrÞakyyðrÞ8R4r40, clearly indicating that Stoney’s assumption of equi-
biaxiality is violated.
The main purpose of the present paper is to remove the two restrictive

assumptions of the Stoney analysis relating to spatial uniformity and equi-biaxiality.
This is done here only in relation to axisymmetric variations. To do so we consider
the case of a thin film/substrate system subjected to arbitrary, radially symmetric
temperature fields TðrÞ whose presence will create a radially symmetric stress and
curvature field as well as arbitrarily large stress and curvature gradients. Our goal is
to relate film stresses and system curvatures to the temperature distribution and to
ultimately derive a relation between the film stresses and the system curvatures that
would allow for the accurate experimental inference of film stress from full-field and
real-time curvature measurements which may occur during or after thermal
processing.
2. Governing equations

A thin film deposited on a substrate is subject to axisymmetric temperature
distribution TðrÞ, where r is the radial coordinate (Fig. 1). The thin film and substrate
are circular in the lateral direction and have a radius R.
The thin-film thickness hf is much less than the substrate thickness hs, and both are

much less than R, i.e., hf5hs5R. The Young’s modulus, Poisson’s ratio and
coefficient of thermal expansion of the film and substrate are denoted by
Ef ; nf ; af ;Es; ns and as, respectively. The deformation is axisymmetric and is therefore
independent of the polar angle y, where ðr; y; zÞ are cylindrical coordinates with the
origin at the center of the substrate (Fig. 1).
The substrate is modeled as a plate since it can be subjected to bending, and

hs5R. The thin film is modeled as a membrane which cannot be subject to bending
due to its small thickness hf5hs. Let uf ¼ uf ðrÞ denote the displacement in the
radial ðrÞ direction. The strains in the thin film are �rr ¼ duf=dr and �yy ¼ uf=r. The
stresses in the thin film can be obtained from the linear thermo-elastic constitutive
model as

srr ¼
Ef

1� n2f

duf

dr
þ nf

uf

r
� ð1þ nf ÞafT

� �
,

syy ¼
Ef

1� n2f
nf
duf

dr
þ

uf

r
� ð1þ nf ÞafT

� �
. ð2:1Þ

The membrane forces in the thin film are

N ðfÞ
r ¼ hfsrr; N

ðfÞ
y ¼ hfsyy. (2.2)

It is recalled that, for uniform temperature distribution T ¼ constant, the normal
and shear stresses across the thin film/substrate interface vanish except near the free
edge r ¼ R, i.e., szz ¼ srz ¼ 0 at z ¼ hs

2
and roR. For non-uniform temperature
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Fig. 3. A schematic diagram of the non-uniform shear traction distribution at the interface between the

film and the substrate.
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distribution T ¼ TðrÞ as in the present study, the shear stress traction may not
vanish anymore, and this shear stress srz is denoted by tðrÞ as shown in Fig. 3. It is
important to note that the normal stress traction szz still vanishes (except near the
free edge r ¼ R) because the thin film cannot be subject to bending. The equilibrium
equation for the thin film, accounting for the effect of interface shear stress traction
tðrÞ, becomes

dN ðfÞ
r

dr
þ

N ðfÞ
r � N

ðfÞ
y

r
� t ¼ 0. (2.3)

The substitution of Eqs. (2.1) and (2.2) into Eq. (2.3) yields the following governing
equation for uf (and t)

d2uf

dr2
þ
1

r

duf

dr
�

uf

r2
¼
1� n2f
Efhf

tþ ð1þ nf Þaf
dT

dr
. (2.4)

Let us denote the displacement in the radial ðrÞ direction at the neutral axis ðz ¼ 0Þ of
the substrate, and w the displacement in the normal ðzÞ direction. It is important to
consider w since the substrate can be subject to bending and is modeled as a plate.
The strains in the substrate are given by

�rr ¼
dus

dr
� z
d2w

dr2
; �yy ¼

us

r
� z
1

r

dw

dr
. (2.5)

The stresses in the substrate can then be obtained from the linear elastic constitutive
model as

srr ¼
Es

1� n2s

dus

dr
þ ns

us

r
� z

d2w

dr2
þ

ns
r

dw

dr

� �
� ð1þ nsÞasT

� �
,

syy ¼
Es

1� n2s
ns
dus

dr
þ

us

r
� z ns

d2w

dr2
þ
1

r

dw

dr

� �
� ð1þ nsÞasT

� �
. ð2:6Þ
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The forces and bending moments in the substrate are

N ðsÞ
r ¼

Z
hs
2

�
hs
2

srr dz ¼
Eshs

1� n2s

dus

dr
þ ns

us

r
� ð1þ nsÞasT

� �
,

N
ðsÞ
y ¼

Z
hs
2

�
hs
2

syy dz ¼
Eshs

1� n2s
ns
dus

dr
þ

us

r
� ð1þ nsÞasT

� �
, ð2:7Þ

Mr ¼ �

Z
hs
2

�
hs
2

zsrr dz ¼
Esh

3
s

12ð1� n2s Þ
d2w

dr2
þ

ns
r

dw

dr

� �
,

My ¼ �

Z
hs
2

�
hs
2

zsyy dz ¼
Esh

3
s

12ð1� n2s Þ
ns
d2w

dr2
þ
1

r

dw

dr

� �
. ð2:8Þ

The shear stress t at the thin film/substrate interface is equivalent to the
distributed axial force tðrÞ and bending moment ðhs=2ÞtðrÞ applied at the neutral axis
ðz ¼ 0Þ of the substrate. The in-plane force equilibrium equation of the substrate
then becomes

dN ðsÞ
r

dr
þ

N ðsÞ
r � N

ðsÞ
y

r
þ t ¼ 0. (2.9)

The out-of-plane force and moment equilibrium equations are given by

dMr

dr
þ

Mr � My

r
þ Q �

hs

2
t ¼ 0, (2.10)

dQ

dr
þ

Q

r
¼ 0, (2.11)

where Q is the shear force normal to the neutral axis. The substitution of Eq. (2.7)
into Eq. (2.9) yields the following governing equation for us (and t):

d2us

dr2
þ
1

r

dus

dr
�

us

r2
¼ ð1þ nsÞas

dT

dr
�
1� n2s
Eshs

t. (2.12)

The elimination of Q from Eqs. (2.10) and (2.11), in conjunction with Eq. (2.8), gives
the following governing equation for w (and t):

d3w

dr3
þ
1

r

d2w

dr2
�
1

r2
dw

dr
¼
6ð1� n2s Þ

Esh
2
s

t. (2.13)

The continuity of displacement across the thin film/substrate interface requires

uf ¼ us �
hs

2

dw

dr
. (2.14)
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Eqs. (2.4) and (2.12)–(2.14) constitute four ordinary differential equations for uf , us,
w and t.
We can eliminate uf , us and w from these four equations to obtain the shear stress

at the thin film/substrate interface in terms of temperature as

t ¼
ð1þ nsÞas � ð1þ nf Þaf

1�n2
f

Efhf
þ 4

1�n2s
Eshs

dT

dr
, (2.15)

which is a remarkable result that holds regardless of boundary conditions at the edge
r ¼ R. Therefore, the interface shear stress is proportional to the gradient of
temperature. For uniform temperature T ¼ constant, the interface shear stress
vanishes, i.e., t ¼ 0.
The substitution of the above solution for shear stress t into Eqs. (2.13) and (2.12)

yields ordinary differential equations for displacements w and us in the substrate.
Their general solutions are

dw

dr
¼
6ð1� n2s Þ

Esh
2
s

ð1þ nsÞas � ð1þ nf Þaf
1�n2

f

Efhf
þ 4

1�n2s
Eshs

1

r

Z r

0

ZTðZÞdZþ
B1

2
r, (2.16)

us ¼ ð1þ nsÞas �
1� n2s
Eshs

ð1þ nsÞas � ð1þ nf Þaf
1�n2

f

Efhf
þ 4

1�n2s
Eshs

2
4

3
5 1

r

Z r

0

ZTðZÞdZþ
B2

2
r, (2.17)

where B1 and B2 are constants to be determined by boundary conditions to be given
in the next section. We have imposed the conditions that w and us are bounded at the
center of the substrate r ¼ 0. The displacement uf in the thin film can be obtained
from interface continuity condition in Eq. (2.14) as

uf ¼ ð1þ nsÞas �
4ð1� n2s Þ

Eshs

ð1þ nsÞas � ð1þ nf Þaf
1�n2

f

Efhf
þ 4

1�n2s
Eshs

2
4

3
5

�
1

r

Z r

0

ZTðZÞdZþ
B2

2
�

hsB1

4

� �
r. ð2:18Þ

It is interesting to observe that, in the limit of hf=hs51, the displacements in Eqs.
(2.16)–(2.18) become

dw

dr
¼ 6

Efhf

1� n2f

1� n2s
Esh

2
s

ð1þ nsÞas � ð1þ nf Þaf½ 

1

r

Z r

0

ZTðZÞdZþ
B1

2
r þ Oð�2Þ,

(2.19)

us ¼ ð1þ nsÞas
1

r

Z r

0

ZTðZÞdZþ
B2

2
r þ Oð�Þ, (2.20)

uf ¼ ð1þ nsÞas
1

r

Z r

0

ZTðZÞdZþ
B2

2
�

hsB1

4

� �
r þ Oð�Þ, (2.21)

where � ¼ hf=hs51.
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The force N ðfÞ
r in the thin film, which is needed for boundary conditions in the next

section, is obtained from Eq. (2.2) as

N ðfÞ
r ¼

Efhf

1� n2f

½ð1þ nsÞas � ð1þ nf Þaf 
T � ð1� nf Þð1þ nsÞas
1

r2

Z r

0

ZTðZÞdZ

þ
1þ nf
2

B2 �
hs

2
B1

� �
þ Oð�Þ

8>>><
>>>:

9>>>=
>>>;
.

(2.22)

The force N ðsÞ
r and moment Mr in the substrate, which are also needed for boundary

conditions in the next section, are obtained from Eqs. (2.7) and (2.8) as

N ðsÞ
r ¼

Eshs

1� n2s
�ð1� n2s Þas

1

r2

Z r

0

ZTðZÞdZþ
1þ ns
2

B2 þ Oð�Þ

� �
, (2.23)

Mr ¼
Esh

2
s

2ð1� n2s Þ

Efhf

1� n2f

1� n2s
Eshs

½ð1þ nsÞas � ð1þ nf Þaf 


� T � ð1� nsÞ
1

r2

Z r

0

ZTðZÞdZ
� �

þ
1þ ns
12

hsB1 þ Oð�2Þ

8>>><
>>>:

9>>>=
>>>;
.

(2.24)
3. Boundary conditions

The first boundary condition at the free edge r ¼ R requires that the net force
vanish,

N ðfÞ
r þ N ðsÞ

r ¼ 0 at r ¼ R. (3.1)

The second boundary condition at the free edge r ¼ R is the vanishing of net
moment, i.e.,

Mr �
hs

2
N ðfÞ

r ¼ 0 at r ¼ R. (3.2)

The above equation, in conjunction with Eqs. (2.22)–(2.24), give

B2

2
¼ ð1� nsÞas

1

R2

Z R

0

ZTðZÞdZþ Oð�Þ, (3.3)

B1

2
¼ 6

Efhf

1� n2f

1� n2s
Esh

2
s

ð1þ nf Þ
1� ns
1þ ns

ðas � af Þ � ðns � nf Þas

� �

�
1

R2

Z R

0

ZTðZÞdZþ Oð�2Þ. ð3:4Þ

under the limit � ¼ hf =hs51.
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It is important to point out that the boundary conditions can also be established
from the variational principle (e.g., Freund, 2000). The total potential energy in the
thin film/substrate system with the free edge at r ¼ R is

P ¼ 2p
Z R

0

rdr

Z hs
2þhf

�
hs
2

U dz, (3.5)

where U is the strain energy density which gives qU=q�rr ¼ srr and qU=q�yy ¼ syy.
For constitutive relations in Eqs. (2.1) and (2.6), we obtain

U ¼
E

2ð1� n2Þ
½�2rr þ �2yy þ 2n�rr�yy � 2ð1þ nÞaTð�rr þ �yyÞ
, (3.6)

where E, n, and a take their corresponding values in the thin film (i.e., Ef , nf and af
for hs

2
þ hfXzX hs

2
) and in the substrate (i.e., Es, ns and as for hs

2
XzX� hs

2
). For the

displacement field in Section 2 and the associated strain field, the potential energy P
in Eq. (3.5) becomes a quadratic function of parameters B1 and B2. The principle of
minimum potential energy requires

qP
qB1

¼ 0 and
qP
qB2

¼ 0. (3.7)

It can be shown that, as expected in the limit hf=hs51, the above two equations
are equivalent to the vanishing of net force in Eq. (3.1) and net moment in
Eq. (3.2).
The displacements in Eqs. (2.19)–(2.21) now become

dw

dr
¼ 6

Efhf

1� n2f

1� n2s
Esh

2
s

�

½ð1þ nsÞas � ð1þ nf Þaf 
 1r
R r

0 ZTðZÞdZ

þ ð1þ nf Þ 1�ns
1þns

ðas � af Þ � ðns � nf Þas
h i

r
R2

RR

0 ZTðZÞdZ

8><
>:

9>=
>;þ Oð�2Þ,

ð3:8Þ

uf ¼ us ¼ ð1þ nsÞas
1

r

Z r

0

ZTðZÞdZþ ð1� nsÞas
r

R2

Z R

0

ZTðZÞdZþ Oð�Þ. (3.9)

It is observed that the leading term of w is on the order of Oð�Þ, and the term
neglected in w is Oð�2Þ. The leading terms of uf and us are identical, which can also be
verified from the interface continuity (2.14) at the film/substrate interface since w is
on the order of Oð�Þ. This observation of uf and us having the same leading term and
w being on the order of Oð�Þ is important for the non-axisymmetric analysis of thin
film/substrate systems.
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4. Stresses and curvatures in thin film and substrate

The substrate curvatures can be obtained from the displacement w as

krr ¼
d2w

dr2
¼ 6

Efhf

1� n2f

1� n2s
Esh

2
s

�

½ð1þ nsÞas � ð1þ nf Þaf 
 T � 1
r2

R r

0 ZTðZÞdZ
� �

þ ð1þ nf Þ 1�ns
1þns

ðas � af Þ � ðns � nf Þas
h i

1
R2

RR

0 ZTðZÞdZ

8><
>:

9>=
>;,

kyy ¼
1

r

dw

dr
¼ 6

Efhf

1� n2f

1� n2s
Esh

2
s

�

½ð1þ nsÞas � ð1þ nf Þaf 
 1r2
R r

0 ZTðZÞdZ

þ ð1þ nf Þ 1�ns
1þns

ðas � af Þ � ðns � nf Þas
h i

1
R2

RR

0 ZTðZÞdZ

8><
>:

9>=
>;. ð4:1Þ

The sum of these two curvatures is

krr þ kyy ¼ 12
Efhf

1� nf

1� ns
Esh

2
s

� ðas � af ÞT̄ þ
1

2

1þ ns
1þ nf

½ð1þ nsÞas � ð1þ nf Þaf 
ðT � T̄Þ

� �
, ð4:2Þ

or equivalently

krr þ kyy ¼ 12
Efhf

1� nf

1� ns
Esh

2
s

ðas � af ÞT
�

þ
ð1þ nsÞ

2

2ð1þ nf Þ
� 1

� �
as þ

1� ns
2

af

� �
ðT � T̄Þ

�
, ð4:3Þ

where T̄ ¼ ð2=R2Þ
RR

0 ZTðZÞdZ ¼
RR

T dA=ðpR2Þ is the average temperature in the
thin film/substrate system.
The first term on the right-hand side of Eq. (4.2) corresponds to a constant

(average) temperature, while the second term gives the deviation from the constant
temperature. Such a deviation is proportional to the difference between the local
temperature T and the average temperature T̄ . This deviation also vanishes when the
coefficients of thermal expansion satisfy ð1þ nsÞas ¼ ð1þ nf Þaf . The first term on the
right-hand side of Eq. (4.3) corresponds to the local temperature T , while the second
term gives the deviation from the local temperature and is also proportional to
T � T̄ .
The difference between two curvatures in Eq. (4.1) is

krr � kyy ¼ 6
Efhf

1� n2f

1� n2s
Esh

2
s

½ð1þ nsÞas � ð1þ nf Þaf 
 T �
2

r2

Z r

0

ZTðZÞdZ
� �

.

(4.4)
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The forces in the substrate are obtained from Eq. (2.7) as

N ðsÞ
r ¼ Eshsas

T̄

2
�
1

r2

Z r

0

ZTðZÞdZþ Oð�Þ

� �
,

N
ðsÞ
y ¼ Eshsas

T̄

2
þ
1

r2

Z r

0

ZTðZÞdZ� T þ Oð�Þ

� �
. ð4:5Þ

The bending moments in the substrate are obtained from Eq. (2.8) as

Mr ¼
Efhf

1� n2f

hs

2

½ð1þ nsÞas � ð1þ nf Þaf 
 T � ð1� nsÞ
1

r2

Z r

0

ZTðZÞdZ
� �

þ
1þ ns
2

ð1þ nf Þ
1� ns
1þ ns

ðas � af Þ � ðns � nf Þas

� �
T̄ þ Oð�Þ

8>>>><
>>>>:

9>>>>=
>>>>;
,

My ¼
Efhf

1� n2f

hs

2

½ð1þ nsÞas � ð1þ nf Þaf 
 nsT þ ð1� nsÞ
1

r2

Z r

0

ZTðZÞdZ
� �

þ
1þ ns
2

ð1þ nf Þ
1� ns
1þ ns

ðas � af Þ � ðns � nf Þas

� �
T̄ þ Oð�Þ

8>>>><
>>>>:

9>>>>=
>>>>;
.

ð4:6Þ

The stresses in the substrate are related to the forces and moments by

sðsÞrr ¼
N ðsÞ

r

hs
�
12Mr

h3s
z,

sðsÞ
yy

¼
N

ðsÞ
y

hs
�
12My

h3s
z. ð4:7Þ

The stresses in the thin film are obtained from Eq. (2.1),

sðfÞrr ¼
Ef

1� n2f

ð1þ nf Þð1� nsÞas
T̄

2
� ð1� nf Þð1þ nsÞas

1

r2

Z r

0

ZTðZÞdZ

þ½ð1þ nsÞas � ð1þ nf Þaf 
T þ Oð�Þ

8><
>:

9>=
>;,

sðfÞyy ¼
Ef

1� n2f

ð1þ nf Þð1� nsÞas
T̄

2
þ ð1� nf Þð1þ nsÞas

1

r2

Z r

0

ZTðZÞdZ

þ½nf ð1þ nsÞas � ð1þ nf Þaf 
T þ Oð�Þ

8><
>:

9>=
>;. ð4:8Þ

It should be noted at this point that in general sðfÞrr asðfÞ
yy
, which is contrary to

Stoney’s assumption. The sum and difference of these stresses have the following
simple expressions:

sðfÞrr þ sðfÞyy ¼
Ef

1� nf
f2ðas � af ÞT̄ þ ½ð1þ nsÞas � 2af 
ðT � T̄Þg,

sðfÞrr � sðfÞyy ¼
Ef

1þ nf
ð1þ nsÞas T �

2

r2

Z r

0

ZTðZÞdZ
� �

. ð4:9Þ
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The first equation of (4.9) can also be rewritten as

sðfÞrr þ sðfÞyy ¼
Ef

1� nf
f2ðas � af ÞT � ð1� nsÞasðT � T̄Þg. (4.10)

For uniform temperature distribution T ¼ constant, the curvatures in the
substrate obtained from Eqs. (4.2)–(4.4) become

k ¼ krr ¼ kyy ¼ 6
Efhf

1� nf

1� ns
Esh

2
s

ðas � af ÞT .

This is exactly the Stoney formula in Eq. (1.1) if the misfit strain is
�m ¼ ð1þ nsÞðas � af ÞT . The stresses in the thin film obtained from Eqs. (4.9) and
(4.10) become

sðfÞ ¼ sðfÞrr ¼ sðfÞyy ¼
Ef

1� nf
ðas � af ÞT .

For this special case only, both stress and curvature states become equi-biaxial. The
elimination of temperature T from the above two equations yields a simple relation
sðfÞ ¼ Esh

2
sk= 6ð1� nsÞhf½ 
. This is the relation obtained by Stoney [see Eq. (1.1)] and it

has been used to estimate the thin-film stress sðfÞ from the substrate curvature k, if the
temperature, stress and curvature are all constant and if the plate system shape is spherical.
In the following, we extend such a relation for non-uniform temperature distribution.
5. Extension of Stoney formula for non-uniform temperature distribution

The stresses and curvatures are all given in terms of temperature in the previous
section. We extend the Stoney formula for non-uniform temperature distribution in
this section by establishing the direct relation between the thin-film stresses and
substrate curvatures.
It is shown that both krr � kyy in Eq. (4.4) and sðfÞrr � sðfÞyy in Eq. (4.9) are

proportional to T � ð2=r2Þ
R r

0 ZTðZÞdZ. Therefore, elimination of temperature gives
the difference sðfÞrr � sðfÞyy in thin-film stresses directly proportional to the difference
krr � kyy in substrate curvatures,

sðfÞrr � sðfÞyy ¼
Esh

2
sas

1� ns

1� nf
6hf

krr � kyy
ð1þ nsÞas � ð1þ nf Þaf

. (5.1)

We now focus on the sum of thin-film stresses sðfÞrr þ sðfÞyy and sum of substrate
curvatures krr þ kyy. We define the average substrate curvature krr þ kyy as

krr þ kyy ¼
1

pR2

ZZ
A

ðkrr þ kyyÞZdZdy ¼
2

R2

Z R

0

Zðkrr þ kyyÞdZ. (5.2)

It can be related to the average temperature T̄ by averaging both sides of Eq. (4.3), i.e.,

krr þ kyy ¼ 12
Efhf

1� nf

1� ns
Esh

2
s

ðas � af ÞT̄ . (5.3)
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The deviation from the average curvature, krr þ kyy � krr þ kyy, can be related to the
deviation from the average temperature T � T̄ as

krr þ kyy � krr þ kyy ¼ 6
Efhf

1� n2f

1� n2s
Esh

2
s

½ð1þ nsÞas � ð1þ nf Þaf 
ðT � T̄Þ. (5.4)

The elimination of temperature deviation T � T̄ and average temperature T̄ from
Eqs. (5.3), (5.4) and (4.9) [or (4.10)] gives the sum of thin-film stresses in terms of
curvature as

srr þ syy ¼
Esh

2
s

6ð1� nsÞhf
krr þ kyy þ

1� ns
1þ ns

�
ð1� nf Þas

ð1þ nsÞas � ð1þ nf Þaf

� ��

�½krr þ kyy � krr þ kyy

�
. ð5:5Þ

The above equation together with Eq. (5.1) provide direct relations between
individual thin-film stresses and substrate curvatures. It is important to note that
stresses at a point in the thin film depend not only on curvatures at the same point
(local dependence), but also on the average curvature in the entire substrate (non-local
dependence).
The interface stress t rð Þ gives in Eq. (2.15) can also be directly related to substrate

curvatures via

t ¼
Esh

2
s

6ð1� n2s Þ
d

dr
ðkrr þ kyyÞ. (5.6)

This provides a remarkably simple way to estimate the interface shear stress from
radial gradients of the two non-zero substrate curvatures.
Since interfacial shear stresses are responsible for promoting system failures

through delamination of the thin film from the substrate, Eq. (5.6) has particular
significance. It shows that such stresses are proportional to the radial gradient of
krr þ kyy and not to its magnitude as might have been expected of a local, Stoney-like
formulation. The implementation value of Eq. (5.6) is that it provides an easy way of
inferring these special interfacial shear stresses once the full-field curvature
information is available. As a result, the methodology also provides a way to
evaluate the risk of and to mitigate such important forms of failure. It should be
noted that for the special case of spatially constant curvatures, this interfacial shear
stress t vanishes as is the case for all Stoney-like formulations described in the
introduction.
Finally it should be noted that Eq. (5.5) also reduces to Stoney’s result for the case

of spatial curvature uniformity. Indeed for this case, Eq. (5.5) reduces to

srr þ syy ¼
Esh

2
s

6ð1� nsÞhf
ðkrr þ kyyÞ. (5.7)

If in addition the curvature state is equi-biaxial ðkrr ¼ kyyÞ, as assumed by Stoney,
Eq. (1.1) is recovered while relation (5.1) furnishes srr ¼ syy (stress equi-biaxiality) as
a special case.
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6. Discussion and conclusions

Unlike Stoney’s original analysis and its extensions discussed in the introduction,
the present analysis shows that the dependence of the stresses on the curvatures is
not generally ‘‘local’’. Here the stress components at a point on the film will,
in general, depend on both the local value of the curvature components (at the
same point) and on the value of curvatures of all other points on the plate
system (non-local dependence). The more pronounced the curvature non-
uniformities are, the more important such non-local effects become in
accurately determining film stresses from curvature measurements. This
demonstrates that analyses methods based on Stoney’s approach and its
various extensions cannot handle the non-locality of the stress/curvature dependence
and may result in substantial stress prediction errors if such analyses are
applied locally in cases where spatial variations of system curvatures and stresses
are present.
The presence of non-local contributions in such relations also has implications

regarding the nature of diagnostic methods needed to perform wafer-level film stress
measurements. Notably the existence of non-local terms necessitates the use of full-
field methods capable of measuring curvature components over the entire surface of
the plate system (or wafer). Furthermore measurement of all independent
components of the curvature field is necessary. This is because the stress state at a
point depends on curvature contributions (from both krr and kyy) from the entire
plate surface.
Regarding the curvature-temperature [Eqs. (4.1)–(4.4)] and stress–temperature

[Eqs. (4.8)–(4.10)] relations the following points are noteworthy. These relations
also generally feature a dependence of local temperature TðrÞ which is ‘‘Stoney-like’’
as well as a ‘‘non-local’’ contribution from the temperature of other points
on the plate system. Furthermore the stress and curvature states are always
non-equibiaxial (i.e., sðfÞrr asðfÞyy and krrakyy) in the presence of temperature
non-uniformities. Only if T ¼ constant these states become equi- biaxial,
the ‘‘non-local’’ contributions vanish and Stoney’s original results are recovered
as a special case and a highly unlikely scenario as clearly demonstrated from
Fig. 2.
Finally it should be noted that the existence of radial non-uniformities also

results in the establishment of shear stresses along the film/substrate interface.
These stresses are in general proportional to the radial derivatives of the first
curvature invariant krr þ kyy [Eq. (5.6)]. In terms of temperature these interfacial
shear stresses are also proportional to the radial gradient of the temperature
distribution TðrÞ. The occurrence of such stresses is ultimately related to spatial non-
uniformities and as a result such stresses vanish for the special case of uniform
krr þ kyy or T considered by Stoney and its various extensions. Since
film delamination is a commonly encountered form of failure during wafer
manufacturing, the ability to estimate the level and distribution of such stresses
from wafer-level metrology might prove to be invaluable in enhancing the reliability
of such systems.
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